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Abstract. The electrostatic force on an earthed conducting sphere positioned symmetrically 
above a circular disc of charge placed on a dielectric half-space is calculated. Bispherical 
polar coordinates are used when the sphere does not touch the half-space and degenerate 
bipolar coordinates are used when the sphere touches the half-space. Results are given in 
terms of rapidly converging infinite series in the former and infinite integrals in the latter. 
The dependence of the force on sphere radius and sphere-half-space separation is pre- 
sented graphically. 

1. Introduction 

In a previous paper, Berry and Higginbotham (1975 to be referred to as BH) employed 
the method of images to evaluate the electrostatic force on a conducting sphere due to a 
circular disc of charge on an infinitely thin insulating plane. The main restriction of the 
BH theory is that it applies only to an insulating material of infinitesimal thickness. 

This present paper investigates the electrostatic force on a conducting sphere due to 
a disc of charge placed on the surface of a dielectric half-space. Two cases are 
considered which require different coordinate systems. For the case of the sphere not 
touching the half-space, bispherical polar coordinates are used; Laplace’s equation is 
solved in the two regions (i) exterior to the sphere and half-space and (ii) within the 
half-space, and the boundary conditions are used to match both solutions at the surface 
of the half-space. When the sphere is touching the half-space, degenerate bipolar 
coordinates are used. In each geometry the solutions of Laplace’s equation are readily 
available, see for instance Lebeder et al (1965). In the former the solution is given in 
terms of Legendre polynomials whereas in the latter Bessel functions are used. 

The electrostatic force on the sphere is given by an integral expression which is 
evaluated numerically. If the half-space has unit dielectric constant, the problem is 
identical with that solved in the previous paper, and the solution obtained here is the 
same thus confirming the previous results. 

2. Bispherical polar coordinates 

The system of bispherical polar coordinates ( q , ~ ,  4 )  is based on the properties of sets of 
coaxial circles as illustrated in figure 1. 
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Figure 1. The system of bispherical polar coordinates (q, T, 4) employed in the analysis. 
The half-space (region 1) carries a uniform surface charge density cr within a disc of radius c. 
The earthed conducting sphere is represented by the circle, centre C. 

The points L and L’ are at a distance d from the origin 0; the variable q is defined by 
q = -ln(PL/PL’) and T is the angle L’PL. The locus of P such that q remains constant, 
with T running between - T and T, is a circle centre C. The coordinates (p, 4, z )  form 
the cylindrical polar coordinate system which are related to (7, T, 4) by 

d sinh q d sin T 
= (cosh q -cos 7) z =  (cosh 7 -COS T)’ 

and by geometry d = r sinh q, p = r cosh q ;  where r is the radius of the circle corres- 
ponding to constant 77. The plane z = 0 is‘given by q = 0. 

Solutions of Laplace’s equation are separable with weight function (cosh q - 
cos T)~” and, if the problem is symmetric in 4, are given by 

m 
(cosh q -cos T)’” 

where Pn(q) are the Legendre polynomials. 
Consider an earthed sphere of radius a whose centre is distance p ( > a )  from a 

dielectric half-space of dielectric constant E,. In this coordinate system the sphere is 
denoted by {q = qo(>O),  -T C T < T, 0 < 4 < 27r) and the half-space (region 1) is given 
by {-a0 C q C 0, -T C T C T, 0 C 4 C 2 ~ ) .  The region 2 outside the sphere and half- 
space is vacuum ( E ,  = 1) and is given by (0 C q < qo, -v C T < T, 0 < 4 < 2 ~ ) .  A circular 
area, centre 0, radius c and carrying a charge density (+ is placed on the surface of the 
half -space. 

(A, cosh(n +$)q +Bn sinh(n +$)q)Pn(cos T) 
n=O 

The electrostatic potentials in regions 1 and 2 are respectively given by 
00 

VI = (cosh q -cos 7 ) l I 2  1 A, e(n+U‘Pn (cos T), 

Vz = (cosh q -cos T ) ~ ”  

n =O 

m 

B,, sinh[(n +$)(q - qo)]P,,(cos T) 
n=O 

where cosh Q~ = p /a  and d = a sinh qo. 
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The choice of V, is such that on the sphere, V, = 0 as required, so that one boundary 
condition is immediately satisfied. On the interface between regions 1 and 2 we require 

v1= v,, q = o  

E,-- av, av, - = (?eo o < p < c  

The second of these equations has been given in terms of cylindrical polar coordi- 
nates; however, it is easy to show that on q = 0,a V/az = d-l( 1 -cos ~ ) ( d  V/dq) and the 
range 0 < p  < c becomes T > T > T~ where cos T~ = (c2 - p 2  +a’)/(c’+p* - a’). 

q =o. 
az az P’C 

On substitution for Vl and V, the constants A, and B, become 

Jm”’ P f l ( p )  3/2 dp 
du 

COB, = 
cosh[(n +$)qO]+tE, sinh[(n +$)qO] -l (1 - p )  

and A, = -B, sinh[(n +$)q01. 

3. Attractive force on the sphere 

The force on the sphere towards the plane is given by 

2 

F =  JI Z c o s B d S  
sphere 

where us is the charge density on the surface of the sphere ( =  eodV2/dr), dS  = 
a 2  sin 8 de  d 4  and (r ,  8,4) are spherical polar coordinates centred on C. In terms of 
bispherical polar coordinates it can be shown that 

(cosh 770 -COS T )  a Vz 
a sinhqO aq 

so that 
(cosh 7 0  - COS T ) ~ ’ ~  

U, = 1 (n +&3,P,(COS 7 ) ;  a s i n h q o  ,=0 

and, when r = a, cos 8 = (cosh qo cos T - l)/(cosh qo- cos T ) .  

The force on the sphere thus becomes 

F = T U ~ I / E ~  
where 

Using the orthogonality conditions for the Legendre polynomials, this reduces to 
cc cc 

I = cosh qo 1 (m + ~ ) E & I ~ E & , , + ~  - 1 $(2m + l)(~J3,,,)’. 

The convergence of these series is sufficiently rapid for a reliable value to be computed 
from the first twenty terms. Given values of a, p ,  c and U, the attractive force on the 
sphere can be calculated. 

m=O m =O 
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4. Degenerate bipolar coordinates 

As the sphere approaches the plane, p / a  + 1, v0+c0 and the analysis given above, 
although still correct, leads to much slower convergence of the series I. It is much more 
convenient to use degenerate bipolar coordinates to solve the problem of an earthed 
sphere in contact with a dielectric half-space on which there is a surface charge density. 
These are constructed from the properties of sets of coaxial circles which touch the 
plane z = 0. 

In terms of cyclindrical polar coordinates (p, z, q5)  the degenerate bipolar coordi- 
nates are given by 

R 

-00 < p  <00, Osa < 00 t-' z = -  
a2+p2' 

a 
p=aZ+p2' 

The locus of a point such that p =Po = constant represents a circle centre C and 
radius $Po. The plane z = 0 is given by /3 = 0. The dielectric half-space (region 1) is 
denoted by (p < 0,O s a < o0,O s q5 < 2tr) and the region 2 outside the half-space and 
sphere is given by (0 < p <Po, 0 s a  < 00,0 s q5 < 2tr) (see figure 2). 

I /  

Figure 2. The geometry of the sphere touching the half-space. The degenerate bipolar 
coordinates (a, /3,q5) are related to the cylindrical polar coordinates shown in the figure by 
2 = P / ( a 2 + P 2 ) ,  p =a/ (a2+p2) .  

Solutions of Laplace's equation are separable with weight function (a2+p2)1/2 and, 
if the problem is symmetric in q5, are given by 

OD 

(a 2 + pz) ( A A  cosh Ap +PA sinh Ap)Jo(Aa) dA 

where Jo(Aa) is the Bessel function of the first kind of zero order. 

respectively 

j A  =O 

Repeating the analysis of 9 2, the electrostatic potentials in regions 1 and 2 are 

03 

v, = ( a Z + p 2 ) 1 ' 2  J O ( A a ) A A  eAB dA -co<pso 
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and 

where 

P) 

1, = O  
Vz=(a2+/3z)1 /2  J0(Aa)BA sinhA(p-po) dA o s p s p o  

U JoOa) da 
'OB* = (cosh(A/2a) + E ,  sinh(A/2u)) j l / ,  a' 

and AA = -BA sinh(A/2a). 
The integral cA = ICc [Jo(Aa)/a2] da  can be evaluated using the recurrence relations 

for Bessel functions and known integrals (see for instance Gradshteyn and Ryzhik 
1965). Thus 

00 

C A  = cJo(A/c)-AJi(h/c)-A +2A 1 J ~ K + ~ ( A / c ) .  
k = O  

5. Force on an earthed conducting sphere touching the dielectric half-space 

The force on the sphere towards the half-space is given in terms of spherical polar 
coordinates by 

I I (a,2/2eo) cos 8 dS. 
sphere 

In this case 

and 

c o s 8 d S = a 2 s i n 8  c o s 8 d 8 d $ = a [ ( 1 / 4 a 2 ) - a 2 ] d a  d$/[a2+(1/4a2)I3. 

Thus 

This expression is evaluated numerically on the computer and each integral con- 
verges sufficiently rapidly so that the upper limits in each case may be taken to be 
around twenty. 

6. Results of calculations 

Figure 3 shows the dependence of the force as a function of the sphere-half-space 
distance (p - a ) .  In like manner to BH, F/K is plotted as ordinate where K = .rra2/4e0; 
the value of c = 1, and U is the total charge density on the surface of the dielectric. If a 
charge density a' is placed on the surface of the dielectric then, of course, (T is the 
effective total charge density U'/€,. A value of a = 0.5 was chosen to illustrate the 
results, it should be noted that each curve will intersect the ordinate at zero slope for a 
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a 3  c i  

Sphere-plane separatlon p - U  (length units) 

Figure 3. The forces on an earthed conducting sphere as functions of sphere-plane 
separation (p - a ) .  

finite value of F/K, however the scaling makes this difficult to illustrate. The values of 
F/K when (p - a )  is zero can be obtained from figure 4 and, if required, a continuation 
of the curves in figure 3 for small spacings can easily be drawn. 

Figure 4 shows the dependence of the force on the sphere radius when the sphere 
touches the half-space. Again c = 1. It should be noted that each of the curves tends to 2 
as a +W.  

The curves have been drawn for one value of c (= l ) .  However if F is the force on a 
sphere of radius a l  due to a disc of charge of radius c1 and centre a distance p1 from the 
half-space, then F = c:Fl; where Fl is the force on a sphere of radius al/cl due to a disc 
of charge of radius 1 and centre a distance pl/cl from the half-space. 

Finally, figure 5 shows the dependence of the force against c, on a sphere of radius 
0.5 when its centre is a distance 1.0 from the half-space and for E, = 1.0. The maximum 

2-  
-!- - 
c 

c = 1  

I I I I I 1 I I 1 K=ro*’Lco 
0 1 2 3 L 5  

Sphere radius U (length units I 

Figure 4. The forces on an earthed conducting sphere as functions of the sphere radii a for 
the case where the sphere touches the half-space. 
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Charge radius c 

Figure 5. The forces on an earthed conducting sphere as a function of c, when a = 0.5 and 
p = 1.0. 

value of the force occurs for c = 5.7; this maximum value of c will obviously depend on 
the parameters a and p. It should be noted that as c + CO, F+ 0 which is in accordance 
with physical arguments. 

7. Conclusion 

This paper extends the results for the electrostatic force on an earthed conducting 
sphere due to a charge on a thin insulating plane, to the force due to a charge on a 
dielectric half-space of dielectric constants 3.0 and 10.0. Two coordinate systems have 
been used and the forces are given in terms of rapidly converging integrals in one case 
and rapidly converging infinite series in the other. The solutions are given graphically. 
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